118 research outputs found

    Phagosome Escape of Rough Mycobacterium abscessus Strains in Murine Macrophage via Phagosomal Rupture Can Lead to Type I Interferon Production and Their Cell-To-Cell Spread

    Get PDF
    Mycobacterium abscessus complex (MAB) is a rapidly growing mycobacterium(RGM) whose clinical significance as an emerging human pathogen has been increasing worldwide. It has two types of colony morphology, a smooth (S) type, producing high glycopeptidolipid (GPL) content, and a rough (R) type, which produces low levels of GPLs and is associated with increased virulence. However, the mechanism responsible for their difference in virulence is poorly known. By ultrastructural examination of murine macrophages infected, we found that MAB-R strains could replicate more actively in the macrophage phagosome than the S variants and that they could escape into cytosol via phagosomal rupture. The cytosolic access of MAB-R strains via phagosomal rupture led to enhanced Type I interferon (IFN) production and cell death, which resulted in their cell-to-cell spreading. This behavior can provide an additional niche for the survival of MAB-R strains. In addition, we found that their enhancement of cell death mediated cell spreading are dependent on Type I IFN signaling via comparison of wild-type and IFNAR1 knockout mice. In conclusion, our data indicated that a transition of MAB-S strains into MAB-R variants increased their virulence via enhanced Type I IFN production, which led to enhanced survival in infected macrophage via cell death mediated cell-to-cell spreading. This result provides not only a novel insight into the difference in virulence between MAB-R and -S variants but also hints to their treatment strategy

    Rough colony morphology of Mycobacterium massiliense Type II genotype is due to the deletion of glycopeptidolipid locus within its genome

    Get PDF
    Background: Recently, we introduced the complete genome sequence of Mycobacterium massiliense clinical isolates, Asan 50594 belonging to Type II genotype with rough colony morphology. Here, to address the issue of whether the rough colony morphotype of M. massiliense Type II genotype is genetically determined or not, we compared polymorphisms of the glycopeptidolipid (GPL) gene locus between M. massiliense Type II Asan 50594 and other rapidly growing mycobacteria (RGM) strains via analysis of genome databases.Results: We found deletions of 10 genes (24.8 kb), in the GPL biosynthesis related gene cluster of Asan 50594 genome, but no deletions in those of other smooth RGMs. To check the presence of deletions of GPL biosynthesis related genes in Mycobacterium abscessus - complex strains, PCRs targeting 12 different GPL genes (10 genes deleted in Asan 50594 genome as well as 2 conserved genes) were applied into 76 clinical strains of the M. abscessus complex strains [54 strains (Type I: 33, and Type II: 21) of M. massiliense and 22 strains (rough morphoype: 11 and smooth morphotype: 11) of M. abscessus]. No strains of the Type II genotype produced PCR amplicons in a total of 10 deleted GPL genes, suggesting loss of GPL biosynthesis genes in the genome of M. massiliense type II genotype strains.Conclusions: Our data suggested that the rough colony morphotype of the M. massiliense Type II genotype may be acquired via deletion events at the GPL gene locus for evolutionary adaptation between the host and pathogen.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000006653/7SEQ:7PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000006653ADJUST_YN:YEMP_ID:A077651DEPT_CD:806CITE_RATE:4.397FILENAME:rough colony morphology of mycobacterium.pdfDEPT_NM:์˜๊ณผํ•™๊ณผSCOPUS_YN:YCONFIRM:

    Mycobacterium seoulense sp. nov., a slowly growing scotochromogenic species

    Get PDF
    A previously undescribed, slowly growing, scotochromogenic mycobacterium was isolated from a patient with symptomatic pulmonary infection during hsp65 sequence-based identification of Korean clinical isolates. Phenetic characteristics of this strain were generally similar to those of Mycobacterium nebraskense and Mycobacterium scrofulaceum. However, some phenetic characteristics differentiated it from these two species. Its 16S rRNA gene sequences were unique and phylogenetic analysis based on 16S rRNA gene sequences placed the organism in the slowly growing Mycobacterium group close to M. nebraskense and M. scrofulaceum. Its unique mycolic acid profiles and the results of phylogenetic analysis based on two independent alternative chronometer molecules, hsp65 and rpoB, confirmed the taxonomic status of this strain as representing a novel species. These data support the conclusion that this strain represents a novel mycobacterial species, for which the name Mycobacterium seoulense sp. nov. is proposed. The type strain is strain 03-19(T) (=DSM 44998(T)=KCTC 19146(T))

    Discovery of a Novel hsp65 Genotype within Mycobacterium massiliense Associated with the Rough Colony Morphology

    Get PDF
    So far, genetic diversity among strains within Mycobacterium massiliense has rarely been studied. To investigate the genetic diversity among M. massiliense, we conducted phylogenetic analysis based on hsp65 (603-bp) and rpoB (711-bp) sequences from 65 M. massiliense Korean isolates. We found that hsp65 sequence analysis could clearly differentiate them into two distinct genotypes, Type I and Type II, which were isolated from 35 (53.8%) and 30 patients (46.2%), respectively. The rpoB sequence analysis revealed a total of four genotypes (R-I to R-IV) within M. massiliense strains, three of which (R-I, R-II and R-III) correlated with hsp65 Type I, and other (R-IV), which correlated with Type II. Interestingly, genotyping by the hsp65 method agreed well with colony morphology. Despite some exceptions, Type I and II correlated with smooth and rough colonies, respectively. Also, both types were completely different from one another in terms of MALDI-TOF mass spectrometry profiles of whole lipid. In addition, we developed PCR-restriction analysis (PRA) based on the Hinf I digestion of 644-bp hsp65 PCR amplicons, which enables the two genotypes within M. massiliense to be easily and reliably separated. In conclusion, two distinct hsp65 genotypes exist within M. massiliense strains, which differ from one another in terms of both morphology and lipid profile. Furthermore, our data indicates that Type II is a novel M. massiliense genotype being herein presented for the first time. The disparity in clinical traits between these two hsp65 genotypes needs to be exploited in the future study

    Development of a Live Recombinant BCG Expressing Human Immunodeficiency Virus Type 1 (HIV-1) Gag Using a pMyong2 Vector System: Potential Use As a Novel HIV-1 Vaccine

    No full text
    Even though the rate of new human immunodeficiency virus type 1 (HIV-1) infections is gradually decreasing worldwide, an effective preventive vaccine for HIV-1 is still urgently needed. The recombinant Mycobacterium bovis BCG (rBCG) is promising for the development of an HIV-1 vaccine. Recently, we showed that a recombinant Mycobacterium smegmatis expressing HIV-1 gag in a pMyong2 vector system (rSmeg-pMyong2-p24) increased the efficacy of a vaccine against HIV-1 in mice. Here, we evaluated the potential of an rBCG expressing HIV-1 p24 antigen Gag in pMyong2 (rBCG-pMyong2-p24) in a vaccine application for HIV-1 infection. We found that rBCG-pMyong2-p24 elicited an enhanced HIV-1 p24 Gag expression in rBCG and infected antigen-presenting cells. We also found that compared to rBCG-pAL-p24 in a pAL5000 derived vector system, rBCG-pMyong2-p24 elicited enhanced p24-specific immune responses in vaccinated mice as evidenced by higher levels of HIV-1 Gag-specific CD4 and CD8 T lymphocyte proliferation, gamma interferon ELISPOT cell induction, antibody production, and cytotoxic T lymphocytes (CTL) responses. Furthermore, rBCG-pMyong2-p24 showed a higher level of p24-specific Ab production than rSmeg-pMyong2-p24 in the same pMyong2 vector system. In conclusion, our data indicated that a live recombinant BCG expressing HIV-1 Gag using a pMyong2 vector system, rBCG-pMyong2-p24 elicited an enhanced immune response against HIV-1 infections in a mouse model system. So, rBCG-pMyong2-p24 may have the potential as a prime vaccine in a heterologous prime-boost vaccine strategy for HIV-1 infection

    A temperature sensitive Mycobacterium paragordonae induces enhanced protective immune responses against mycobacterial infections in the mouse model

    No full text
    Abstract Recently, we introduced a temperature sensitive Mycobacterium spp., Mycobacterium paragordonae (Mpg). Here, we checked its potential as a candidate for live vaccination against Mycobacterium tuberculosis and Mycobacterium abscessus. Intravenous infections of mice with Mpg led to lower colony forming units (CFUs) compared to infection with BCG, suggesting its usefulness as a live vaccine. The analyses of immune responses indicated that the highly protective immunity elicited by Mpg was dependent on effective dendritic maturation, shift of cytokine patterns and antibody production toward a Th1 phenotype, and enhanced cytotoxic T cell response. Compared to BCG, Mpg showed a more effective protective immune response in the vaccinated mice against challenges with 2 different mycobacterial strains, M. tuberculosis H37Ra or M. abscessus Asan 50594. Our data suggest that a temperature sensitive Mpg may be a potentially powerful candidate vaccine strain to induce enhanced protective immune responses against M. tuberculosis and M. abscessus

    Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress.

    No full text
    Mycobacterium abscessus (MAB) is a rapidly growing mycobacterium (RGM), and infections with this pathogen have been increasing worldwide. Recently, we reported that rough type (MAB-R) but not smooth type (MAB-S) strains enhanced type 1 interferon (IFN-I) secretion via bacterial phagosome escape, contributing to increased virulence. Here, we sought to investigate the role of mitochondrial oxidative stress in bacterial survival, IFN-I secretion and NLRP3 inflammasome activation in MAB-infected murine macrophages. We found that live but not heat-killed (HK) MAB-R strains increased mitochondrial ROS (mtROS) and increased release of oxidized mitochondrial DNA (mtDNA) into the cytosol of murine macrophages compared to the effects of live MAB-S strains, resulting in enhanced NLRP3 inflammasome-mediated IL-1ฮฒ and cGAS-STING-dependent IFN-I production. Treatment of the infected macrophages with mtROS-modulating agents such as mito-TEMPO or cyclosporin A reduced cytosolic oxidized mtDNA, which inhibited the MAB-R strain-induced production of IL-1ฮฒ and IFN-I. The reduced cytosolic oxidized mtDNA also inhibited intracellular growth of MAB-R strains via cytosolic escape following phagosomal rupture and via IFN-I-mediated cell-to-cell spreading. Moreover, our data showed that mtROS-dependent IFN-I production inhibited IL-1ฮฒ production, further contributing to MAB-R intracellular survival in murine macrophages. In conclusion, our data indicated that MAB-R strains enhanced IFN-I and IL-1ฮฒ production by inducing mtROS as a pathogen-associated molecular pattern (PAMP). These events also enhance bacterial survival in macrophages and dampen inflammation, which contribute to the pathogenesis of MAB-R strains

    Role of the DNA Mismatch Repair Gene MutS4 in Driving the Evolution of Mycobacterium yongonense Type I via Homologous Recombination

    No full text
    We recently showed that Mycobacterium yongonense could be divided into two genotypes: Type I, in which the rpoB gene has been transferred from Mycobacterium parascrofulaceum, and Type II, in which the rpoB gene has not been transferred. Comparative genome analysis of three M. yongonense Type I, two M. yongonense Type II and M. parascrofulaceum type strains were performed in this study to gain insight into gene transfer from M. parascrofulaceum into M. yongonense Type I strains. We found two genome regions transferred from M. parascrofulaceum: one contained 3 consecutive genes, including the rpoBC operon, and the other contained 57 consecutive genes that had been transferred into M. yongonense Type I genomes via homologous recombination. Further comparison between the M. yongonense Type I and II genomes revealed that Type I, but not Type II has a distinct DNA mismatch repair gene (MutS4 subfamily) that was possibly transferred via non-homologous recombination from other actinomycetes. We hypothesized that it could facilitate homologous recombination from the M. parascrofulaceum to the M. yongonense Type I genomes. We therefore generated recombinant Mycobacterium smegmatis containing a MutS4 operon of M. yongonense. We found that the M. tuberculosis rpoB fragment with a rifampin resistance-conferring mutation was more frequently inserted into recombinant M. smegmatis than the wild type, suggesting that MutS4 is a driving force in the gene transfer from M. parascrofulaceum to M. yongonense Type I strains via homologous recombination. In conclusion, our data indicated that MutS4 in M. yongonense Type I genomes may drive gene transfer from M. parascrofulaceum via homologous recombination, resulting in division of M. yongonense into two genotypes, Type I and II

    Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection

    No full text
    Recombinant Mycobacterium strains such as recombinant BCG (rBCG) have received considerable attention for the HIV-1 vaccine development. Recently, we described a temperature-sensitive Mycobacterium paragordonae (Mpg) strain as a novel live tuberculosis vaccine that is safer and showed an enhanced protective effect against mycobacterial infection compared to BCG. We studied the possibility of developing a vaccine against HIV-1 infection using rMpg strain expressing the p24 antigen (rMpg-p24). We observed that rMpg-p24 can induce an increased p24 expression in infected antigen presenting cells (APCs) compared to rBCG-p24. We also observed that rMpg-p24 can induce enhanced p24 specific immune responses in vaccinated mice as evidenced by increased p24-specific T lymphocyte proliferation, gamma interferon induction, antibody production and cytotoxic T lymphocyte (CTL) responses. Furthermore, an rMpg-p24 prime and plasmid DNA boost showed an increased CTL response and antibody production compared to rBCG or rMpg alone. In summary, our study indicates that a live rMpg-p24 strain induced enhanced immune responses against HIV-1 Gag in vaccinated mice. Thus, rMpg-p24 may have potential as a preventive prime vaccine in a heterologous prime-boost regimen for HIV-1 infection.Y
    • โ€ฆ
    corecore